实数包括什么

来源:趣秒懂 2.84W

实数包括什么

实数,是有理数和无理数的总称。也可说是正数、0、负数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

实数的基本运算:

实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

实数的性质:

封闭性

R 实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。

有序性

实数集是有序的,即任意两个实数 a 、b 必定满足并且只满足下列三个关系之一:a<b ,a=b , a>b。

传递性

实数大小具有传递性,即若 a>b ,且 b>c,则有 a>c 。

阿基米德性质

实数具有阿基米德性质(Archimedean property),即∀a , b∈R,若 a>0,则∃正整数 n, na>b 。

稠密性

R实数集具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数.

完备性

作为度量空间或一致空间,实数集合是个完备空间,它有以下性质:

一. 所有实数的柯西序列都有一个实数极限。

有理数集合就不是完备空间。例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) 是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限 √2 。

实数是有理数的完备化——这亦是构造实数集合的一种方法。

极限的存在是微积分的基础。实数的完备性等价于欧几里德几何的直线没有“空隙”。

二. “完备的有序域”

实数集合通常被描述为“完备的有序域”,这可以几种解释。

首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素z , z+1 将更大)。所以,这里的“完备”不是完备格的意思。

另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。

R 这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。

“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是 R 的子域。这样 R 是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。

与数轴对应

R 如果在一条直线(通常为水平直线)上确定 O 作为原点,指定一个方向为正方向(通常把指向右的方向规定为正方向),并规定一个单位长度,则称此直线为数轴。任一实数都对应与数轴上的唯一一个点;反之,数轴上的每一个点也都唯一的表示一个实数。于是,实数集与数轴上的点有着一一对应的关系。

高级性质

实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为 2ω (请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。事实上这假设独立于ZFC集合论,在ZFC集合论内既不能证明它,也不能推出其否定。

所有非负实数的平方根属于R,但这对负数不成立。这表明R上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于R。这两个性质使成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。

实数集拥有一个规范的测度,即勒贝格测度。

实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述。不可能只采用一阶逻辑来刻画实数集:1. Löwenheim–Skolem theorem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2. 超实数的集合远远大于R,但也同样满足和R一样的一阶逻辑命题。满足和R 一样的一阶逻辑命题的有序域称为R的非标准模型。这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在中证明要简单一些),从而确定这些命题在R中也成立。

拓扑性质

实数集构成一个度量空间:

x 和 y 间的距离定为绝对值|x-y|。作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是 1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。但实数集不是紧致空间。这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚。以下是实数的拓扑性质总览:

i.令 a 为一实数。 a 的邻域是实数集中一个包括一段含有 a 的线段的子集。

ii.R是可分空间。

iii. Q 在R中处处稠密。

iv.R的开集是开区间的联集。

v.R的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。

vi.每个R中的有界序列都有收敛子序列。

vii.R是连通且单连通的。

viii.R中的连通子集是线段、射线与R本身。由此性质可迅速导出中间值定理。

热门标签